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PROJECT SUMMARY

Dynamics Technology, Inc. (DTI) and the Pennsylvania State University (PSU)

Department of Aerospace Engineering have assessed-the feasibility of using
fiber optic strain sensors embedded in a composite material to measure the
magnitude and frequency of structural vibrations for control of flexible
elements. The objectives of this Phase I study were to'demonstrate the
ability to embed fiber optic strain sensors in a composite material, to
determine the performance of these sensors,.-t identify active control system
architectures that are matched to the fiber optic system measurands to damp
vibrations of large space structure5, and to estimate the stability achievable

by these methods.

A detailed laboratory study was performed in which DTI built'a wide band
closed-loop-fiber Mach-Zehnder interferometer to conduct transverse vibration
measurements on sub-scale composite elements with embedded fiber sensors,
which were fabricated by PSU. The interferometer detects vibrations by
measuring the strain transferred by the composite to the embedded optical
fiber. The strain sensor demonstrated the ability to track the vibrations of

- a cantilever bcam over a frequency bandwith ranging from approximately 5 Hz to
almost 1000 Hz. The sensor was unable to detect dc strains because of thermal
drift and laser power fluctuations. These factors produced a drift in the dc
signal level, which was indistinguishable from static strain measurements.
Beyond 1000 Hz, the composite element was unable to follow the drive
mechanism. The noise equivalent strain was e Zl0-10.

Analysis has been conducted on the control of structural shape of large space
structures. General design principles are applied to the specific case of a
cantilever beam, as a representative structural member. The control concepts
focus on the positioning of the free end of the beam. The control issues are
then extended to arbitrary structural shapes.

The concept of embedded fiber sensors has been clearly demonstrated in the
Phase I project and an approach for an integrated structural control system
has been identified. The principal issues to be addressed in Phase II are:

* Refinement of the fiber configuration within the composite element toenhance the sensor response at higher frequencies and for torsional

- as well as bending modes.

*. Investigation of techniques to measure near-dc structural

deflections.

* Development of fiber sensor combinations or adaptation of
' multiplexing techniques suitable to structural subgroups.

*-.Implementation of a prototype control algorithm matched to the signal
characteristics of distributed fiber optic sensors.

Demonstration ot a small scale, end-to-end structural vibration

control system which can be used to identify engineering issues and
to validate system concepts.
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FOREWOR D

This program was conducted under contract SDIO 87-12. The work was funded
through the Small Business Innovative Research Program (SBIR) and performed
from October 1987 through February 1988. The technical monitor for this work
was Dr. Albert Tucker of the Office of Naval Research. Technical discussions
with Dr. Keith Wanser of Dynamics Technology, Inc. are greatly appreciated.
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1. INTRODUCTION

Control of flexible space structures is a problem that extends to several
initiatives in the development of orbiting platforms. In particular, SDI
platforms will require a very high degree of pointing accuracy and stability,
~10 - 6 radians. A number of ventures involving large satellites and other
strategic defense platforms, such as Spaced Based Laser and Space Based Radar,
will employ designs that incorporate flexible appendages, such as lightweight
mirrors and antennas, whose operation depends upon a carefully controlled
microgravity environment, i.e. minimal accelerations. Pointing accuracy must
be maintained in the presence of self-induced platform motion (tracking and
retargetting) and impact from foreign objects.

Future soace structures will make abundant use of composite laminates using
advanced resins reinforced with high stiffness materials, such as graphite and
boron. To minimize the problems associated with vibration of these large,
lightweight structures, new concepts in active control are needed. A critical
element of such a control system is an integrated measurement system that will
sense the state of deformation or strain with adequate bandwidth to resolve
and null the energetic vibration modes.

Dynamics Technology, Inc (DTI) and Pennsylvania State University (PSU)
Department of Aerospace Engineering propose a technique for vibration control
that uses embedded fiber optic sensors and an integrated control system to
measure the distributed strain in structural elements and provide active
feedback for force transducers. Fiber optic sensors have been shown to offer
unique advantages in sensing strain, temperature, and other quantities in
harsh environments. The state of strain of a structural element with embedded
fibers can be sensed over a broaL area of the structure, since the optical
fibers are laid up in the structure along with the composite fibers. The
necessary control-related measurements can be made continuously while the
structure is undergoing a vibrational excitation. Potentil advantages of
fiber optic strain sensors embedded in composite materials include:

* - Structural advantages of composites plus potential for rugged
embedded sensors through laminated fabrication techniques.

- High resolution, wide bandwidth, low power consumption, EMI
resistance, and flexible geometry possible with fiber optic sensors.

- Synergism of fiber optic sensors and advanced control theory to
c achieve an integrated structural control system.

- .Possibility of efficient optical signal processing of data from
e numerous sensors in a large scale advanced system.

N NA. -1- 'J _&



The goal of this SBIR research program is to demonstrate the feasibility of
building a composite-embedded, fiber optic sensor, active, structural control
system for strategic defense platforms. The specific Phase I objectives were

the following:

- Demonstrate feasibility of embedding fiber optic strain sensors in a

composite material in the laboratory.

- Characterize the baseline performance of embedded fiber optic

sensors.

J- Identify candidate active control techniques, algorithms and
associated distributed sensor geometries for control of large pe
structures.

- Estimate the stability achievable by the candidate techniques.

The results of this Phase I study confirm the viability of a fiber optic
strain sensor to dctect and measure low amplitude composite element
vibrations. The fiber optic strain sensor was successfully embedded within
the sub-scale composite element and measurements of the induced vibrations
using the interferometric sensors followed the response predicted by theory
with good accuracy. Also, control analysis was performed on methods to
constrain the vibrations.

A description of the embedded fiber optic sensor experiment and theory is
discussed in Section 2, followed by the results of the lab tests in Section 3.
Section 4 consists of the analysis of the candidate active control methods. A

N summary of the requirements for the Phase II development is included in
Section 5.

-2-
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2. SYSTEM DESIGN APPROACH

The experimental aspects of this study involved building the fiber
interferometer, developing the electronic circuitry, and fabricating the
composites with embedded fiber. The embedded sensor system consists of two
major design elements: (1) a closed-loop, wideband, fiber optic
interferometer and (2) a fiber-embedded composite structural element.

2.1 Fiber Optic Interferometer Design

The vibration sensing system is built around a fiber optic Mach-Zehnder
interferometer, as shown in Fig. 2.1. A HeNe laser directs light through a

125 micron diameter fiber and the incident light is split into two legs by an
integrated fiber optic directional coupler. One leg contains the transducer
element (in this case the fiber embedded composite element) and the other is a
stacic reference leg. The coupler is ruggedized to insure constant coupling
amidst temperature variations. The output intensity is detected by a pair of
photodiodes, and any shift in the relative phase of the light in the two legs
is sensed as an intensity change at the photodiodes. A piezoelectric (PZT)
cylinder wound with optical fiber acts as a strain compensation element, and
is used in an active feedback loop to maintain the interferometer in
"quadrature" (v/2 relative phase), where it has maximum sensitivity, as shown

... in Fig. 2.2.

In general, the light output of a fiber interferometer can be split in any
pronortion between the two output fibers depending on the relative phase at
the output coupler. The interferometer is most sensitive to small phase
changes when the relative phase between the two optical legs is v, 3r/2, and

so on, as shown in Fig. 2.2. Usually, slow ambient temperature variations will

cause a drift in the relative output phase due to small differential strains
in the two interferometer legs. The PZT's in the compensation system h ve
linear voltage-expansion coefficients and are used in feedback loop to strain

the fiber in the reference leg until quadrature is attained.

For efficient interferometric coupling, or optimum constructive and
* destructive interference, the light in each leg should have about the same

polarization direction at the output coupler. Although the light output of a
laser may be highly polarized, birefringence in single mode fibers
significantly alters this polarization. Differences in polarization result in
a reduction of the fringe visibility. Drifting of the polarization with time
will change the fringe visibility and the phase sensitivity of the device.

-- 3
4%

.. -3-

% %*4 ~ 44



4',4

ID.

11

CN

r4 I.I



PHOTODIODE 1 PHOTODIODE 2

. ., ' max

PHOTODIODE
CUTPUT \C,€ CUR R.E 11T%

min

Tr 2"T" 3 7

OUADRATURE POINT

PHASE
S E SITIVITY

IflJt,.

3r/2 5n/2 7n/2

RELATIVE PHASE (RADIANS)

Fig. 2.2 Interferometer Phase Sensitivity

%

% %-

.. p 'r ' 1 1- ,-N .- , .-



6k

In order to minimize the polarization drift problem, a phase detection scheme
was used that minimizes the polarization drift effect with a fast quadrature
tracking feedback loop that keeps the photodiode output levels equal
regardless of the fringe visibility. In this scheme, an optical error signal
generated in the interferometer by either signal or noise is filtered,
integrated, and then fed back to the fiber wound PZT, keeping the
interferometer balanced. The integrated error signal is then a linear measure
of the optical phase shift to be evaluated.

The calibration of optical phase shift depends only on the fixed PZT strain
constant of the feedback element. The radian/volt conversion was measured to
be 3.6 rad/V. It is nominally insensitive to polarization drift which affects
fringe visibility. In this configuration, the principal effect of
polarization drift is to partially reduce the sensor bandwidth which is a
problem that can be largely overcome by conservative design of the feedback

bandwidth.

An important constraint in the circuit design is the need to prevent the
* fundamental mechanical resonance of the piezoelectric element from causing

loop instability. The PZT resonant frequency for the experimental set-up
occurs at about 30 kHz and high frequency noise can excite the PZT elements
and alter the performance. The resonance problem can be managed by adjusting
the gain on the PZT feedback amplifier following classical control loop design
principles.

2.2 Composite Sensor Design and Fabrication

As indicated in the introduction, the flexibility of optical fiber permits a
r-untless array of configurations for distributed strain measurements. By
appropriate choice of fiber routing, one may extract linear strain, bending,
torsion, differential strain, or combinations of these. Similarly, by
concentrating more fiber in areas of particular interest (e.g. vibrational
nodes or edges) one may amplify the contribution from these areas to the total
integrated strain output.

* Because of the limited scope of Phase I and the desire to demonstrate
conceptual feasibility and consistency with readily obtainable theoretical
predictions, a relatively simple fiber/structural configuration was chosen
consisting of a rectangular beam with the embedded fiber offset uniformly form
the axis of symmetry. This configuration was made to avoid having any fiber

* protrude out from the free end of the composite since loose fiber in the
vitration tests would add unnecessary noise to the measurements. Obviously,
More cCmplex structures would be the focus of Phase II.

%4
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The procedure used in the fabrication of the test specimens was as follows.

Twenty plies of 640-600/5245C graphite/epoxy prepreg were cut and laid up in

the prescribed [04/90s2 layup. After the 18th ply was layed, a length of

optical fiber was cut and layed on the ply in the configuration shown in
Figure 2.3a. The remaining two plies were then layed onto the specimen.

Pigtails approximately one meter in length were left on the optical fiber to

facilitate splicing into the interferometer. The specimen was then cured in a
programmable hot press using the manufacturer's suggested cure cycle. A
pressure of 100 psi was applied throughout the cycle. The temperature was

raised at 2"F/min. to 350'F and held for 2 hours. Finally, the temperature
was decreased at 5"F/min. to 90'F. The specimen was then removed and cut to

size with a diamond impregnated saw.
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-. (NOT TO SCALE)

ig. 2 .3b"" The composite sample with embedded fiber optic contains twenty

plies. The fiber optic is laid between the 8th and 9th piy up
from the center line (CL).

.x

S.* (NOT TO SCALE)

.hFig. 2.3bg<<5 The fiber optics is laid from one end back around to prevent
• $ rotjrusionl of he fiber on one end. This arrangement avoids noise

. pioc up from loose fiber.
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3. LABORATORY TESTS

Single mode optical fiber was successfully embedded in a sub-scale composite
sample, and was spliced into the transducer leg of the interferometer strain
sensor. The performance of the subscale demonstration sensor was evaluated by
driving the composite element at various frequencies and amplitudes and

observing the sensor's response. A comparison was made of the actual
displacement of the free end of the cantilever with the value predicted from
theory using the interferometer output data. The free end displacement was
measured by a mechanical displacement gauge or a laser reflection device, and
the measurements are accurate to within ±0.005 inches.

The Mach-Zehnder interferometer described in Section 2.1 was used to detect
*the vibrations by measuring the strain transferred by the composite cantilever

to the embedded optical fiber. Thus, as the cantilever bends during
vibration, the fiber will experience tension and compression. This change in
length of the transducer leg of the interferometer causes a phase difference

,' in the laser light relative to that in the reference leg. An electronic
circuit is then used to produce a voltage proportional to the magnitude and

0 frequency of the light phase shift which is approximately proportional to the

change in fiber length.

In the experiment the composite was arranged as a cantilever with one end
fixed and the other left free to vibrate. This geometry was convenient to
produce forced oscillations and provided for a straightforward solution to the
equation of motion. The vibration analysis, discussed in Appendix B, was done
by modeling the composite as a homogeneous beam with continuously distributed
mass and elasticity, which was shown to be a good approximation. The

experiments revealed results consistent with the theoretical analysis of
cantilever beam vibration. The sensor was able to response drive frequencies
from 5 to 1000 Hz with vibration amplitudes as high as 0.5 mm for a 10.5" long

cantilever at its resonance and a noise equivalent stain of 10 -10. The
% ,bandwith of the response is limited on the upper end by the ability of the

composite element to follow the drive frequency. The amplitude of the
OL$ response is limited by the power supply voltages and the radian/volt scale
* factor of the PZT. The circuit was designed to reset at a peak voltage of 10V

and the scale factor of 3.6 rad/volt allowed for maximum fiber elongation
* amplitudes of 36 radians.

3.1 Test Set-Up

S The experimental tests were conducted in two parts. First, at DTI, a simple
arrangement was set-up with the composite element clamped on one end to the

edge of a table. A razor blade, used for its ferrous content, was glued to
the free end of the composite. An electromagnet was then used to the

e r. cantilever. The set-up was used to demonstrate the operation of the
interferometer and to validate the cantilever vibration modeling assumptions.

l.



A more sophisticated approach was undertaken at PSU where the composite

element was driven with a mechanical shaker as shown in Figs. 3.1 and 3.2.

The shaker has a flat response over the frequency range which the composite

could follow the drive, which was about 1 kHz. The displacement of the

cantilever beam was measured with the dial gauges shown in Fig. 3.2 with an

accuracy of ±.005 inches. A close-up view of the bench top fiber optic

inteferometer is shown in Fig. 3.3.

3.2 Identification of Natural Frequencies

At DTI, measurements of the vibration amplitudes were taken over a sweep of

frequencies to locate the resonance values. These resonant frequencies could

be compared to the theoretical values, discussed in Appendix B, to the

modeling assumptions. The response of the vibration sensor to a sinusoidal

input was measured with cantilevers of lengths 4", 6", and 7". The resonances

were located by identifying the voltage response maxima.

The first two natural frequencies predicted from theory for cantilevers of

C. lengths 4", 6", and 7" are given below along with the measured first two

resonant frequencies.

Table 3.1 Resonant Frequencies of Composite Element

Cantilever Order
Length of Mode Theoretical Experimental

4" fl 117 Hz 100 Hz

f2 732 Hz

6" fl 52 Hz 55 Hz

* f2  236 Hz

7"1 fl 38 Hz 38 Hz

f2 239 Hz 230 Hz

eI

The experimental results reasonably agree with the theory, hence the
assumptions made to model the composite beam appear to be reasonable. The
composite element failed to follow the simple magnetic drive beyond 300 Hz.
Thus no data was obtained for the second harmonic for L=4" and L=6".

-10-
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3.3 Cantilever Impulse Response

The second experiment performed at PSU, consisted of applying an impulse to
the cantilever, and measuring the response. Fig. 3.4 shows a representative
result. The upper trace is the beam's impulse response for which the
amplitude initially rises to a maximum and then damps out. The lower trace is
the impulse input. The cantilever length was set L=10.5, and the first three
natural frequencies are 29 Hz, 187 Hz, and 578 Hz.

An impulse is a realistic perturbation to a space structure (e.g. impact of a
foreign object), and its frequency response identifies the magnitude of the
excited modes. A spectrum was computed of the cantilever's input response and
is shown in Fig. 3.5. There are frequency peaks shown at 29 Hz, 50 Hz, 85 Hz,
150 Hz, 180 Hz, and 270 Hz. There are three frequencies excited in addition
to the natural frequencies. There are three possible reasons for this
discrepancy. First, the 270 Hz observed "natural" frequency may represent a
subharmonic of the 580 Hz cantilever natural frequency. Second, the fibers
extending from the base of the plate to the interferometer could have been
excited since the base of the plate was being driven by the electromagnetic
shaker. Thus, this extraneous frequency may actually represent a natural

V frequency of the optical cables. In any case, additional testing would need

to be performed to positively identify the source of these extraneous modes.
The large amplitude at 50 Hz is present because the impulse wavetrain was set
at 50 Hz.

As previously mentioned, the existence of non-harmonic frequency peaks could
be indicative of natural frequencies of other parts of the system, such as the
electronics, the PZT's, or the fiber-optic pigtails. In order to minimize the
vibrations in the pigtails, they were taped to the stationary part of the
shaker, a short distance from the root. Enough slack was left such that the
beam motion would not draw them tight. In this configuration, resonant motion
of these short lengths of the pigtails is a distinct possibility. It was
demonstrated that bending of the fibers resulted in a response from the
interferometer. Therefore, resonant bending of the fiber optic cables could
cause resonant behavior at their natural frequencies. An interesting note is
that 85 Hz and 270 Hz are in the proper ratios to be the second and third
harmonics, possibly, of the fiber optical cables.

3.4 Sensor Calibration

A representative sample of the data is shown in Fig. 3.6 at the composite's
first resonance at 29 Hz. The upper trace is the interferometer output as
measured from the feedback voltage to the PZT. The peak-to-peak voltage is
11.2 V, which is close to the interferometer maximum of 12 V. The lower trace
is the input to the mechanical shaker. There is a difference in phase between

. the input and the output of 180 degrees because the output signal is taken
from the feedback voltage to the PZT. The feedback is negative in sign
relative to the optical phase shift.

-13-
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* 25 mV/div Composjite Element Impulse Response

Sensor Output
2.5 V/div

Drive Signal

B..0 25 50 75 100 125 150 175 ms

Figure 3.4 The upper trace is the response of the cantilever
~ "' when excited with an impulse. The impulse signal,

shown in the lower trace, is a realistic perturbation
to a space structure.
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9.8 mV/di') Frequency Spectrum of Response

0 39 78 117 156 195 234 273 H~z

Figure 3.5 A spectrum is computed of the cantilever impulse

response to determine the magnitudes of the excited

frequency modes.
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5 V/div Vibration Sensor Response at f 29 Hz

Sensor Output

2 5 mV/div

Drive Signal

0 10 20 30 40 50 60 70 Ms

%'. Figure 3.6 A representative sample of the data is shown at the
% composite's first resonance at 29 Hz. The upper

trace is the sensor output as measured from the
* feedback voltage to the PZT. There is a difference

in phase of 180 degrees, which is a result of the
negative feedback feature.
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The strain e(x) at a distance x from the free end of the cantilever can be
calculated from the free end displacement d from its equilibrium position.
Equation 3.1 shows this relationship, and can be found in Reference 5.

3dax
e(x) -

L
(3.1)

where a is the distance from the neutral axis and L is the cantilever length.

The total elongation in the fiber can be found theoretically by integrating
(3.1) from 0 to L and multiplying by 2 in order to account for the 2- pass
fiber wrap in the composite element. The result is

3da
e -

* T L (3.2)

The measured end displacement d=.022 inches for the data shown in Fig. 3.6,

corresponds to an elongation eT = 3x10- 6 m, or a maximum strain e(L)=3xl0 - 5 .
The peak voltage of the sensor response is V = 5.5V, which, using the PZT
scale factor of 3.6 rad/V, yields an experimentally measured elongation of eE
= 2x10 6 m. The theoretical and experimental values agree to the same order

*" of magnitude. T e discrepancy may be related to the use of (3.1), which has
* been derived fo static strains. A spectrum of the interferometer noise was

taken over the same frequency range as that of the vibration measurements, -5
Hz to 1000 Hz. The broadband average noise was determined to be -4x10- 4

v/THf. This value corresponds to a noise-equivalent strain on the orfer of
magnitude of 10-10, or a fiber elongation of enois e z 4xl0-1 1 m.

The other data, presented in Appendix A, were taken for vibrational modes
beyond the fundamental. No analytic equations were derived to relate the

displacement to the strain for higher modes, thus, comparison of experimental
measurements with theoretical predictions were not pursued.

In addition to the cantilever configuration in Fig. 2.3b, other sensor layouts

were considered. One idea involved a double cantilever arrangement where the
fiber prctrude through the side of the composite, as shown in Fig. 3.7.
However, succesful fabrication of this configuration had not been accomplished

at the time of the test were conducted.

%

U 1 12"

(1 NOTTO SCALE)

2.' Fig. 3.7 Double cantilever arrangement of fiber in composite

element.
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4. VIBRATION CONTROL ANALYSIS

This section addresses the problem of controlling the structural shape of an
element in a spacecraft. The form of control for a structure will depend
strongly on exactly what is to be controlled (e.g., the position of one or
more specific points on the surface of a structural member, or the overall
shape of the member). Therefore, while general design methodologies for
structural controllers are possible, ultimately, they must be applied in a
manner appropriate to the specific structure under consideration and the
specific performance criteria required of the controller. Accordingly, the
analysis in Sections 4.1 and 4.2 examines the control concepts employed in
this prototype control scheme are then conceptually extended to arbitrary
structural shapes and embedded fiber sensors in Section 4.3.

* 4.1 Cantilevered Beam

UUnder the assumption of linear response, the differential equation of motion
for a beam is

EI a 4u(x,t) a2 u(x,t)
+ p - F (x,t)ax 4  at2 c

~(1)
with a solution, in terms of modal components, of

u(x,t) = Z A(t) .n (x),n n n(?

where E = modulus of elasticity

I = area moment of interia

p = mass per length of the beam

uU deflection of the beam

Fc-(X,t) = control forcing function

An(t) = temporal part of the solution u(x,t).

n(X) = mode shapes; i.e., spatial part of the solution.e
x = distance from fixed end of the cantilever beam

t = time

For a cantilevered beam, the mode shapes are

n [[J(sinhg x sinO x) + coshX c°OSAnxnBn n nnn

, (3)

-18-
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1% with
[ -cosA L + coshp L

sing L + sinhP L

(4)
where

L = length of beam

Pnr spatial frequencies, satisfying the characteristic equation:

(cosnL) (cosh~nL) + 1 = 0 (See Appendix B and D)
(5)

The general differential equation for the An is

L

+ 2A f(t) p(x) n (x) dx

n n n L
Pf (x) dx. o n

where
2

- n EI-"

n 2 FpIO
L

(7)

= natural angular frequency corresponding to
the n-th mode.

p(x) = load factor (indicative of the force and
moment distribution on the beam)

(-) = derivative with respect to time

and F(t) = normalized time variation

If the control force is concentrated at location x., with strength Fo, then
the external driving force (in this case, the control force) is

Fc : Fo 6 (x-xc) f-(t) (8)

where 6 Dirac delta function

and the numerator in the right-hand side of Equation (6) is then replaced with

Foe (z

A + 1An = F f(t)n (xc) p dxn n n 0 n cn
0 

(9)

-19-

S .p

,4*.~in,



The displacement of the beam-tip (i.e. x = L) is determined using equation (2)

u(L,t) = n A n (L)
n n n

(I0)

Now, taking Laplace transforms of equations (9) and 10) yields (transformed
quantities are denoted by (-l)

" +W n]2 n (s) F o (x )F(s)" n = Fon (c

(11)

u(L,s) = An(s) n(L)

(12)

from which a servo-control scheme can be devised, as shown in the block
diagram below (Fig. 4.1):

x/ I I

Un,.j+ FTr)3' Sp1

4/ l~heroptic
I F K, A(,) / Sen.,l{ "Z0)

.2

F K1  A (s) )
- 2 - 2 a0S + w on L

.

Fig. 4.1 The block diagram is shown fora servo-control scheme.

The quantity F(s) is the Laplace transform of the control force and Uref in
Fig. 4.1 is the desired (reference) value for u at the beam-tip. In order to
realize this controller, the number of modes being modeled must be decided a
priori, and their appropriate transfer functions inserted in the parallel group

* of blocks that generate the An values.

% The Gc is a compensator, designed to give the desired characteristics for the
V, controller. This design will depend strongly upon how many modes are to be

controlled (i.e. how many of the Kn are retained in the system model) . Note

that the Kn are given by

% F o (x
K or. c

n L 2

p1 0 ~2  dx

-20-
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where the integral in the denominator is

L sin20 L nL _ sin2n LoJ (x)dx - 2 + OLn fAIB 2

0 + LB 2
2 n  n 20

n

e e nL [[e2 OnL + ljsino L + [i-e 2OnL cos L]

20
n

20 L -20 L
n n+ e - e

S. 20 20 2L

4

e n 2 0 n + 2 L _

-. [] e-nL [[ e
2 0 nL llsing L + [e + cos L]
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20j 200
4."4 .
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',, 2 L
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4.2 Example Control System

As shown in Fig. 4.2 the control force is applied at position xc . if Uref
(input to the controller) is 0, then the control loop will alter the control
force as needed (in the presence of some disturbance), attempting to regulate
the position of the beam-tip at zero-deflection. The sensing is performed by
the fiber optics and associated electronics.

U

< j L

40.

-." Fxc C

* Fig. 4.2 The control force Fc is applied to the cantilever at

xc•

"-"" Using a beam with dimensions

L = 1i in.

thickness = 0.11 in.
width = 3.0 in.

and
" - p = 0.01848 lb.-in.

xc  2.0 in.

EI 5228.1 lb.- in.2

and
Fo  = 1.0 lb.

the following gains (Kn) were obtained

N Kn6

1 3.0687 x 10-1
2 1.1031
3 7.2080 x 10 -

4 - 5.4712 x 10 -

A. 5 -15.6069

-/%.-
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With this design, the controller will attempt to regulate only the position of
the beam-tip. Even in the first mode of vibration, the deflection at the mid-
span of the beam will generally not be zero, and if other modes are being
excited, then it is possible for the beam to have a highly irregular,
oscillating shape and yet still have its tip position controlled adequately.

An alternative approach is to control the shape of the entire length of the
beam (i.e., control the deflections at many points along the beam).
Theoretically, this can be accomplished for a cantilevered beam by using only
one actuator (forcing device) , although any mode having a node at the
actuator location cannot be controlled. To increase reliability, redundant
actuators would be employed, and located at different positions. Fig. 4.3 is

%a block diagram for a multiposition regulator (i.e., one that controls the
deflections at numerous points along the beam).

PLANT

CONTROLLERI

" .? Fig. 4.3 The block diagram describes a multiposition regulator.2

. .. !The "plant" is the structure being controlled, and x is a vector of state

variables (in this case, the deflections at specified points in the system).. The matrices A and B are functions of the natural system dynamics, and can be
. identified from the output of a finite element model analysis. The vector u*

. is the optimal input (or set of inputs) from the controller [force(s) and/or
moment(s)], optimal in that the overall deviation of the structural shape fromnominal is minimized in some sense. Conceptually, the matrix function F couldcontain the necessary processing of the fiber output that is sensing the

. , deflect ions (components of x).

"By tkndifrne inintegrated srisin the fibers, some of the noise
~in the sensing loop carn be removed. Work in Phase II would explore how this

0_ differential strain information might be used in refining the single-fiber

.' measurements.

A(1

.,

1~, . It is also possible to augment the actuator system with torquingFdevices, such as gyroscopic reaction wheels, tat exert internal
The"plmoments on the structure.

dnt2. Figure taken from Kirk, Optimal Control Theory.
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4.3 General Case Using Embedded Fiber Sensor

ip A real space structure consists of complicated geometric shapes that defy
straightforward analysis. In this situation, a finite element model can be
developed and analyzed numerically (via NASTRAN, etc.) to get the
characteristic frequencies and mode shapes. In principle, the signal from a
single optical fiber embedded in a member would provide all the information
necessary to effect the control. This information is obtained via a spectral
decomposition of the fiber signal, giving the characteristic frequencies of
vibration and their amplitudes. A prior calibration of these against the
numerical analysis would allow determination of the shape of the member. It
is that information that must be sensed and fed back in the control loop.

The implication of using a single fiber to sense the state of the system
O(i.e., the structural shape) is profound. Using multiple fibers would not

only add robustness to the system by achieving redundancy, but would also
introduce the possibility of determining differential strains (i.e., the
strain occurring in a small section of the member between two loops) as shown
below (Figure 4.4).

(Top view of beam)

.1"2 1

Bandin Aid

Figure 4.4 Differential strain in beam between arrows could be
measured by subtracting integrated strain in fiber
number 2 from that in number 1.

AWPP
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5. SUMMARY AND PHASE II DEVELOPMENT REQUIREMENTS

The objectives of Phase I, as repeated below, have been met:

* A baseline fabrication technique for composite-embedded fiber optic
sensors was developed and a proof-of-principle configuration of fiber

* geometry were built.

* A broadband, wide dynamic range fiber interferometer that is robust

and reliable was designed and tested.

Vibration tests were performed at DTI and PSU to characterize sensor
response and validate the theoretical model for an embedded sensor.

* Candidate control system architectures were identified which are
consistent with the fundamental signal characteristics provided by a
distributed fiber optic strain sensor.

These results provide a proof of the embedded sensor concept and a foundation
for establishing the Phase II prototype development goals and requirements.

4Phase II requirements may be grouped into four areas:

Sensor Development

Embedded fiber sensor configurations should be refined to provide enhanced
response in frequency ranges and bending modes likely to dominate the motion
of real engineering structural elements (e.g. combined bending and torsion,

differential strain, higher frequencies, etc.). The fabrication techniques
should be refined to assure structural integrity of the element and facilitate
large pieces. In this regard, the focussed SBIR effort can benefit from
parallel programs in other agencies (e.g. Air Force, where material properties

.of embedded fiber sensors for aircraft components are being systematically
assessed).

Subsystem Design

Common subgroups of structural elements can perhaps be linked together (either
optically or through special software routines) to provide basic "building
blocks" which can ultimately be combined in a much larger structure in a

y flexible and systematic fashion. In the long term, optical preprocessing of
the raw interferometer output from such structural subgroups may substantially
improve system efficiency. Closely related to this issue is the broad topic
of fiber optic sensor multiplexing, which is receiving attention in a variety
of sensor application areas. This related work will also benefit Phase II and
full scale development.

-25-
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Algorithm Implementation

The fundamental issues related to a control system matched to a distribution

fiber sensor system have been evaluated in Phase I and candidate approaches

have been identified. In Phase II specific algorithms should be written and

tested in a small scale structure.

Subscale Testing

A small testbed should be constructed to perform an end-to-end validation the
system design concepts developed in Phase II. The testbed will be efficient

and flexible enough to permit an assessment of a variety of configurations

-7 under a realistic range of loading conditions. It is anticipated that much of
the equipment can be drawn from the existing structural test facility at the
Pennsylvania State University laboratory.

The success of Phase I and the continuing importance of space structure
control for future programs suggest that extension of the current work into
Phase II prototype development is a valuable investment.

4.
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APPENDIX A

*FIBER OPTIC VIBRATION SENSOR DATA

Plots of the sensor output signal and the vibration input signal at the first
five resonant frequencies are contained in the appendix. The composite
element was arranged as a cantilever of length 10.5 inches. The vibration

*peaks, as measured by the sensor, occurred at 29 Hz, 187 Hz, 290 Hz, and 578
Hz.

The second experiment consisted of exciting the cantilever with an impulse,

and measuring the response. The upper trace is the response to the lower
trace, which is the impulse. A spectrum is computed of the impulse response

* to determine the energy of the existing vibration modes.
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5 V/div 1 Vibration Sensor Response at f = 29 Hz

I-
,% I L

.9 Sensor Output

0 10 20 30 40 50 60 70 ms

I VdivVibration Sensor Response at f 187 Hz
S mV/div 4 f

I--

Drive Signal

0 2 4 6 8 10 12 14 ms
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1 V/div' Vibration Sensor Response at f =290 Hz
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25 mV/div! Composite Element Impulse Response

Sensor Output
2.5 V/div 1

V Drive Signal

0 25 50 75 100 125 150 175 ms

9.8 mVdi' Frequency Spectrum of Response I'

0 9 78 117 156 195 234 273 Hz4
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25 mV/div, Composite Element Impulse Response
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25 mV/div; 4 Composite Element Doublet Response
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APPENDIX B

VIBRATION ANALYSIS OF THE CANTILEVER BEAM

The equation of motion for the lateral vibration of a beam can be found by

examining the forces and moments acting on an element of the beam, as shown in

Figure BI. The quantities involved are the shear moments V, bending moments

M, and beam load per unit length p(x).

PCI) dX
444

* MC IE M+dM

I/,*- V + d V

(2-X

Figure Bl.

The sum of the forces in the y direction gives the result,

dV - p(x)dx = 0

(Bi)

and the sum of the moments about any point on the right face of the element

suggests,

".1 2
dM - Vdx -- p(x) (dx) = 0

(B2)

These equations result in the following relationships,

dV/dx p(x)

dM/dx V
(B3)

Eqn. (Bl) states that the rate of change of shear along the length of the beam

is equal to the loading per unit length, and Eqn (B2) states the the rate of

change of the moment along the beam is equal to the shear.

VThe bending moment M is related to the curvature by the flexure equation,

M = EI d2 u/dx
2

(B4)
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where E is the modulus of elasticity and I is the moment of inertia of the

beam. Cor-ibining Eqns. B3 and B4 results ir. the lateral vibrational equation
fof motion:

EI d  
= p(x)

dx d

(B5)

The equation of motion, (B5), can be solved by use of a separation of

variables technique, where the solution is assumed to be the product of a time

dependent variable and a space dependent variable. Since the cantilever beam
vibrates about its static equilibrium point, the load per unit length is equal

to the inertial load due to its mass and acceleration. Since the inertial

* force is in the same direction as p(x), as shown in Fig. B1, the load can be

said to oscillate with harmonic motion at frequency w so that

p(x) = pW 2 u (B6)

where p is the mass per unit length of the beam. The equation for the lateral
vibration of the beam reduces to

d 2  EI d2 uJ - 2 = 0dx 2  d
*(B7)

For the present configuration, the flexural rigidity of the composite, EI, is
assumed to be constant, and Eqn. (B7) can be written as

"° 4du 2

EI - - pW u = 0
4

dx (B8)

By denoting the following,

4 = pW 2 /EI (B9)

the fourth-order differential equation results:

* 4du 4 u = 0

4ii (BI0)

The general snlution of Eqn. (B10) is given by

. u(,-) Acoshox + Bsinh Ox + Ccosx + Dsin:-: (BI)

o°'V
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The boundary conditions of the cantilever are given by 0

u=O

at x=0 du/dx = 0I 2 2
at x=l [ d u/dx = 0

d y/dx = 0

(B12)
Substituting the boundary conditions in the general solution results

u(x) x=o A + C = 0 A= -C

Sdu o [Asinhox + Bcoshfx - Csinox + Dcosox] = 0
dx X=o -B= -D

d o A(coshOL + cosOL) + B(sinhOL + sinOL = 0
x dx 2 x=L

(B13)

d u 0 * A(sinhOL - sinOL) + B(coshOL + cosOL) = 0
.d- x=L (I

d , 3 x=L =(B14)
Dividing Eqn. (B13) by Eqn. (B14) reduces to the following,

cosh(OL) cos(OL) + 1 = 0 (RlS

A numerical method is required to solve Eqn. (B15) to determine the normal
modes of oscillation. A Fortran program implementing the Newton routine has
been used to solve for the roots of the equation, and the first twelve
solutions are found in Appendix D.

Using Eqn. C9, the natural frequencies and the nodal positions for the first
five modes have been listed in Table 1.

Mode Angular Freauency Nodal Position x/L

3.52 ] EI
1 w - 0.0

1 2 p
L

2 22.0 EI 0.0 0.783

3 w2 61.7 EI 0.0 0.504 0.868

121 El 0.0 0.358 0.644 0.905w2 L 2 P~L

200 El

5-° = 002 2 0.0 0.279 0.500 0.723 0.926-. *]. L2  P"..
L
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There are an infinite number of roots to Eqn. (B15), thus the general solution
to (BI0) can be written as a Fourier sum.

"S 0
y(x,t) = ( (Acoshp x + Bsinh$ x + Ccosf x + Dsin~x) EsinW t + FcosW t)

n=L n n n n n
! (BI 6)

'S
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• ' APPENDIX C
~SCHEMATICS OF THE ELECTRONIC FEEDBACK CIRCUITRY
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APPENDIX D

CALCULATION OF NATURAL FREQUENCIES OF CANTILEVER

The equation of motion of a cantilever beam has been derived and solved in

Appendix B. The boundary equations are imposed to determine the natural
frequencies of vibration. The resulting characteristic equation is found to

be as follows:

cosh(OL)cos(lL) + 1 = 0

The roots of this equation are found by using a Newton method which takes a
initial guess and iterates until the convergence conditions are met.

The first twelve natural frequencies found by this method are given below.

Mode Frequency (On)

* 1 3.52
2 22.0

3 61.7
S 121

5 200
6 299
7 417
8 555

9 713
10 891
11 1088
12 1305

.- 41
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